Ontario Grid-Connected Peak Demand (Q3)

23,240 MW

set September 5, 2018, 6:00 pm EST

Source: IESO

Ontario Grid-Connected Peak Demand (YTD)

23,240 MW

set in Q3 – September 5, 2018, 6:00 pm EST

Source: IESO

Transmission Grid-Connected Generation Output (Q3)

<table>
<thead>
<tr>
<th>Source</th>
<th>Commodity</th>
<th>Output</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nuclear</td>
<td>23.44 TWh</td>
<td>62.4%</td>
<td></td>
</tr>
<tr>
<td>Hydro</td>
<td>8.05 TWh</td>
<td>21.4%</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>4.05 TWh</td>
<td>10.8%</td>
<td></td>
</tr>
<tr>
<td>Wind</td>
<td>1.70 TWh</td>
<td>4.5%</td>
<td></td>
</tr>
<tr>
<td>Solar</td>
<td>< 1 TWh</td>
<td>0.5%</td>
<td></td>
</tr>
<tr>
<td>Biofuel</td>
<td>< 1 TWh</td>
<td>0.3%</td>
<td></td>
</tr>
</tbody>
</table>

Source: IESO

Conservation Savings (Q3)

<table>
<thead>
<tr>
<th>Source</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Peak Demand Savings</td>
<td>39 MW</td>
</tr>
<tr>
<td>Net Energy Savings</td>
<td>193 GWh</td>
</tr>
</tbody>
</table>

Source: IESO

Ontario's Transmission Grid

This map displays generation facilities with installed capacity of more than 20 megawatts (MW) connected to the high-voltage transmission grid. Please note that this map is used for illustrative purposes only. All locations are approximate.

Last updated: June 2018.

1. Class A customers are large electricity consumers that pay Global Adjustment based on their proportion of energy use during the five hours of the year with the highest demand. All other customers are Class B, and pay GA on a volumetric basis.

Commodity Cost – Class A (¢/kWh)

<table>
<thead>
<tr>
<th>Source</th>
<th>Hourly Ontario Energy Price (Unweighted average)</th>
<th>Global Adjustment (Average, Class A)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 YTD</td>
<td>2.82</td>
<td>4.91</td>
<td>7.73</td>
</tr>
<tr>
<td>Q3 YTD</td>
<td>2.29</td>
<td>4.92</td>
<td>7.21</td>
</tr>
</tbody>
</table>

Source: IESO

Commodity Cost – Class B (¢/kWh)

<table>
<thead>
<tr>
<th>Source</th>
<th>Hourly Ontario Energy Price (Weighted Average)</th>
<th>Global Adjustment (Average, Class B)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 YTD</td>
<td>3.03</td>
<td>7.88</td>
<td>10.91</td>
</tr>
<tr>
<td>Q3 YTD</td>
<td>2.48</td>
<td>8.88</td>
<td>11.36</td>
</tr>
</tbody>
</table>

Source: IESO

Legend

- Nuclear generation
- Hydroelectric generation
- Gas-fired generation
- Wind-powered generation
- Biofuel generation
- Solar generation
- 500 kV Transmission lines
- 230 kV Transmission lines
- 115 kV Transmission lines
Electricity Supply

Monthly Energy Grid Output by Fuel Type

Ontario’s bulk electricity grid has a diverse supply mix, featuring baseload generators that provide energy around the clock, intermittent generators that generate when they are able (primarily wind and solar), and flexible generators that can change their output quickly (primarily natural gas).

The data shown above is sourced from a report developed by the IESO, available at reports.ieso.ca/public/GenOutputbyFuelMonthly/PUB_GenOutputbyFuelMonthly.xml. The report uses settlement data to provide information for all self-schedulers, intermittent and dispatchable Ontario generators registered as a Market Participant. The report – which includes all grid-connected generators, plus those embedded generators that are also registered as market participants – is published monthly as per the Physical Settlement calendar.

Note: Total MW value may not add up to sum of column totals due to rounding. Source: IESO
Imports and Exports

Ontario is connected to a large, stable network of transmission systems across North America, which supports system reliability and economic efficiency. Imports compete against domestic generation to provide energy at the best possible price and to support the province’s needs during periods of high demand. Ontario also exports energy when it is economic, which helps to bring in revenue to offset other system and infrastructure costs and maintain system reliability during times of surplus generation.

Ontario imports and exports power across 26 interties with two provinces and three states. While Ontario is electrically interconnected with Manitoba, Michigan, Minnesota, New York and Quebec, the interties allow for electricity trade in transactions that can reach across eastern North America, contributing to a more diversified and competitive pool of supply.

Q3 Imports

![Graph showing imports from different sources.]

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manitoba</td>
<td>4.3%</td>
</tr>
<tr>
<td>Michigan</td>
<td>1.5%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>0.1%</td>
</tr>
<tr>
<td>New York</td>
<td>0.6%</td>
</tr>
<tr>
<td>Quebec</td>
<td>93.5%</td>
</tr>
</tbody>
</table>

Q3 Exports

![Graph showing exports to different sources.]

<table>
<thead>
<tr>
<th>Source</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manitoba</td>
<td>2.6%</td>
</tr>
<tr>
<td>Michigan</td>
<td>50.7%</td>
</tr>
<tr>
<td>Minnesota</td>
<td>0.1%</td>
</tr>
<tr>
<td>New York</td>
<td>37.9%</td>
</tr>
<tr>
<td>Quebec</td>
<td>8.7%</td>
</tr>
</tbody>
</table>

Q3 (GWh) | Manitoba | Michigan | Minnesota | New York | Quebec | Total |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imports</td>
<td>122.35</td>
<td>42.82</td>
<td>3.19</td>
<td>18.40</td>
<td>2,672.06</td>
<td>2,858.81</td>
</tr>
<tr>
<td>Exports</td>
<td>102</td>
<td>2,010.65</td>
<td>2.8</td>
<td>1501.64</td>
<td>345.49</td>
<td>3,962.5</td>
</tr>
</tbody>
</table>

Note: Numbers may not add up to totals due to rounding.

Source: IESO

Installed Capacity Connected to Transmission Grid

Changes to installed transmission grid capacity in this quarter highlight the continuing process of renewal in Ontario’s electricity sector. While nuclear, hydroelectric and natural gas production accounted for the vast majority of bulk supply, new wind, biofuel and solar generators continued to connect to the transmission grid.

The IESO Active Generation Contract List provides the status of individual contracted electricity supply projects within different IESO procurement programs. The list is limited to generation facilities under contract to the IESO.
New Facilities Registered in Q3
No projects completed commissioning and the market entry process in the third quarter of 2018.

Grid-Connected Generation Capacity

The table below shows the increased use of renewable resources for generating electricity in the province.

Grid-Connected Generation Capacity

<table>
<thead>
<tr>
<th>Year (MW)</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Coal</th>
<th>Gas*</th>
<th>Wind</th>
<th>Biofuel</th>
<th>Solar</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q3 2018</td>
<td>13,009</td>
<td>8,473</td>
<td>0</td>
<td>10,277</td>
<td>4,412</td>
<td>495</td>
<td>380</td>
<td>37,045</td>
</tr>
<tr>
<td>2017</td>
<td>13,009</td>
<td>8,490</td>
<td>0</td>
<td>10,277</td>
<td>4,213</td>
<td>495</td>
<td>380</td>
<td>36,863</td>
</tr>
<tr>
<td>2016</td>
<td>12,978</td>
<td>8,451</td>
<td>0</td>
<td>9,943</td>
<td>3,923</td>
<td>495</td>
<td>280</td>
<td>36,070</td>
</tr>
<tr>
<td>2015</td>
<td>12,978</td>
<td>8,432</td>
<td>0</td>
<td>9,942</td>
<td>3,504</td>
<td>495</td>
<td>240</td>
<td>35,591</td>
</tr>
<tr>
<td>2014</td>
<td>12,947</td>
<td>8,462</td>
<td>0</td>
<td>9,920</td>
<td>2,543</td>
<td>455</td>
<td>40</td>
<td>34,367</td>
</tr>
<tr>
<td>2013</td>
<td>12,947</td>
<td>7,939</td>
<td>2,291</td>
<td>9,920</td>
<td>1,725</td>
<td>124</td>
<td>0</td>
<td>34,946</td>
</tr>
<tr>
<td>2012</td>
<td>12,998</td>
<td>7,947</td>
<td>3,293</td>
<td>9,987</td>
<td>1,511</td>
<td>122</td>
<td>0</td>
<td>35,858</td>
</tr>
</tbody>
</table>

* Units that use natural gas, oil or are dual fuel, such as Lennox, NP Kirkland and NP Cochrane, are included in the Gas category. Source: IESO

Note: Numbers may not add up to totals due to rounding.

Embedded Generation (IESO-contracted)

Embedded generators supply electricity to local distribution systems, helping to reduce demand on the transmission grid and supporting some of the needs of local communities. While wind and solar make up the majority of contracted embedded generation, the IESO has contracted for increasing amounts of hydroelectric, combined heat and power, natural gas and biofuel systems that will also connect to local distribution networks.

By the end of Q3 2018, there was 3,387 MW of contracted generation in commercial operation within local distribution systems.
Contracted Embedded Generation Capacity in Commercial Operation (Q3)

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Coal</th>
<th>Gas</th>
<th>Wind</th>
<th>Biofuel</th>
<th>Solar</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Q3 (MW)</td>
<td>13,009</td>
<td>8,751</td>
<td>0</td>
<td>10,548</td>
<td>5,003</td>
<td>605</td>
<td>2,493</td>
<td>24</td>
<td>40,432</td>
</tr>
<tr>
<td>2018 Q3 (%)</td>
<td>32%</td>
<td>22%</td>
<td>0%</td>
<td>26%</td>
<td>12%</td>
<td>1%</td>
<td>6%</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Numbers may not add up to totals due to rounding.

The table below shows the increased use of embedded generation to supply electricity to local distribution systems in the province.

Contracted Embedded Generation Capacity in Commercial Operation

The data shown above are sourced from the IESO Progress Report on Contracted Supply. The report provides a quarterly update on the status of supply and procurement initiatives that are under development or in commercial operation, by fuel type, and aggregates total capacities as stated in each contract, which differs from values on installed capacity used for operation purposes. The report is available at ieso.ca/power-data/supply-overview/transmission-connected-generation.

Total Grid-Connected and Contracted Embedded Generation Capacity

This chart shows all grid-connected capacity and IESO-contracted capacity in the province. It is calculated by adding the two capacity categories listed above.

<table>
<thead>
<tr>
<th>Year</th>
<th>Nuclear</th>
<th>Hydro</th>
<th>Coal</th>
<th>Gas</th>
<th>Wind</th>
<th>Biofuel</th>
<th>Solar</th>
<th>Other</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 Q3 (MW)</td>
<td>13,009</td>
<td>8,751</td>
<td>0</td>
<td>10,548</td>
<td>5,003</td>
<td>605</td>
<td>2,493</td>
<td>24</td>
<td>40,432</td>
</tr>
<tr>
<td>2018 Q3 (%)</td>
<td>32%</td>
<td>22%</td>
<td>0%</td>
<td>26%</td>
<td>12%</td>
<td>1%</td>
<td>6%</td>
<td><1%</td>
<td></td>
</tr>
</tbody>
</table>

Note: Total IESO-contracted embedded generation in commercial operation at end of each period. Numbers may not add up to totals due to rounding.
Available Capacity at Peak

<table>
<thead>
<tr>
<th></th>
<th>25,135 MW (Q3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak Demand</td>
<td>23,240 MW (Q3)</td>
</tr>
<tr>
<td>Operating Reserve Requirement</td>
<td>1,723 MW (Q3)</td>
</tr>
<tr>
<td>Minimum Demand</td>
<td>10,701 MW (Q3)</td>
</tr>
</tbody>
</table>

Available capacity is all installed grid-connected capacity, less allowances made for seasonal derates, planned outages and the capacity of energy-limited resources. Reserves are required to ensure that the forecast Ontario Demand can be supplied with a sufficiently high level of reliability. Operating Reserve is the amount of supply resources required to handle the loss of the largest contingency on the grid, plus the loss of half the amount of the second largest contingency. More information on the criteria, tools and methodology the IESO uses to perform resource adequacy assessments can be found at ieso.ca/power-data/market-summaries-archive.

Conservation

The province established two targets in electricity savings to be achieved through conservation programs for the period of 2015-2020. 1) the Conservation First Framework (CFF) delivered by LDCs and the IESO with a target of 7.4 terawatt-hours (TWh); and 2) the Industrial Accelerator Program (IAP) delivered to transmission-connected customers by the IESO with a target of 1.3 TWh. Overall the province continues to expect to achieve 8.7 TWh in savings by December 31, 2020. Programs reach all sectors and provide customers with incentives to help them use energy wisely.

As of Q3 2018, CFF Programs have achieved 5,459 gigawatt-hours (GWh) in electricity savings representing 74% of the 7.4 TWh 2020 target, and the IAP Program has achieved 395 GWh in electricity savings representing 30% of the 1.3 TWh 2020 target.

For more details on quarterly results please see the quarterly IESO Conservation Progress Report via the IESO Conservation Reports website: ieso.ca/power-data/conservation-overview/conservation-reports.

Conservation Portfolio Progress – Results (as of 2018 Q3)

<table>
<thead>
<tr>
<th>Incremental Progress</th>
<th>2018 Q3 Incremental</th>
<th>2015-2018 Q3 Incremental</th>
<th>2020 Target Progress (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC & IESO Delivered CFF</td>
<td>Peak Demand Savings (MW)</td>
<td>39</td>
<td>739</td>
</tr>
<tr>
<td></td>
<td>Energy Savings (GWh)</td>
<td>191</td>
<td>5,459</td>
</tr>
<tr>
<td>IESO Delivered IAP</td>
<td>Peak Demand Savings (MW)</td>
<td>-</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Energy Savings (GWh)</td>
<td>2</td>
<td>395</td>
</tr>
<tr>
<td>Total Portfolio</td>
<td>Total Peak Demand Savings (MW)</td>
<td>39</td>
<td>853</td>
</tr>
<tr>
<td></td>
<td>Total Energy Savings (GWh)</td>
<td>193</td>
<td>5,854</td>
</tr>
</tbody>
</table>

Note: Totals may not align due to rounding.

Source: IESO

2. All conservation metrics above are presented as ‘net’ savings which take into consideration the actual influence of the program on participants (e.g., estimating free-ridership and spill over savings). Furthermore, all savings presented above persist until the year 2020 at the end-user level (e.g., accounting for transmission and distribution system line losses). To align savings with generation level metrics, values should be increased by factor of 6.7% for distribution system level savings or a factor of 2.5% for transmission system level savings.

3. Results presented are ‘reported’ (i.e. ‘unverified’) based on project installation dates corresponding to the indicated period and are based on projects reported and invoiced to the IESO as of 2018 Q3.
Incremental Savings (2018 Q3)

<table>
<thead>
<tr>
<th>2020 Annual Peak Demand Savings</th>
<th>2020 Annual Energy Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>LDC CFF Residential Programs: 0 MW</td>
<td>LDC CFF Residential Programs: 0 GWh</td>
</tr>
<tr>
<td>LDC CFF Business Programs: 37 MW</td>
<td>LDC CFF Business Programs: 184 GWh</td>
</tr>
<tr>
<td>LDC CFF Local/Regional/Pilot Programs: 2.4 MW</td>
<td>LDC CFF Local/Regional/Pilot Programs: 8 GWh</td>
</tr>
<tr>
<td>IESO CFF Programs: 0 MW</td>
<td>IESO CFF Programs: 0 GWh</td>
</tr>
<tr>
<td>IESO IAP Program: 0 MW</td>
<td>IESO IAP Program: 2 GWh</td>
</tr>
</tbody>
</table>

Note: Numbers may not add up to totals due to rounding. Source: IESO

Demand Response (DR)

Demand response and peak savings programs benefit the electricity system and lower energy costs for consumers by contributing to overall peak savings for the province.

Beginning in December 2015, DR capacity has been procured through a competitive DR Auction process. Demand response in the wholesale market is being transitioned from the Contract-Based Demand Response (CBDR) program to an annual DR Auction. The DR Auction provides a transparent and cost-effective way to select the most competitive providers of DR, while ensuring that all providers are held to the same performance obligations. As the approximately 500 MW of capacity from CBDR contracts expire, that expiring capacity will be made available for competitive selection in the DR Auction.

The December 2017 DR auction procured 570.7 MW for the summer six-month commitment period beginning on May 1, 2018, and 712.4 MW for the winter six-month commitment period beginning on November 1, 2018.

Peak Savings

The Industrial Conservation Initiative (ICI) encourages large consumers to shift their energy use away from system-wide peaks. Customers who are able to reduce their impact on peaks benefit the system by reducing the need to build new infrastructure. In 2017, ICI is estimated to have reduced peak demand by 1,400 MW. Participating customers are assessed an individual Global Adjustment (GA) rate, based on the percentage that their demand contributes to the top five system coincident peaks measured during a defined base period.

The table below lists the top five daily peaks for the most recent base period, which began on May 1, 2016, and ended on April 30, 2017.

<p>| Top 5 Peaks: Hours & System-Wide Consumption (Base Period: May 1, 2016 to April 30, 2017) |
|---|---|</p>
<table>
<thead>
<tr>
<th>Date</th>
<th>Hour Ending</th>
<th>Net Ontario Load (MW)</th>
<th>Embedded Generation (MW)</th>
<th>Total (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>August 10, 2016</td>
<td>18</td>
<td>22,636.692</td>
<td>572.321</td>
<td>23,209.013</td>
</tr>
<tr>
<td>September 7, 2016</td>
<td>17</td>
<td>22,526.876</td>
<td>635.985</td>
<td>23,162.861</td>
</tr>
<tr>
<td>September 11, 2016</td>
<td>18</td>
<td>22,317.771</td>
<td>789.884</td>
<td>23,107.655</td>
</tr>
<tr>
<td>August 12, 2016</td>
<td>17</td>
<td>22,188.464</td>
<td>753.156</td>
<td>22,941.620</td>
</tr>
<tr>
<td>July 13, 2016</td>
<td>17</td>
<td>21,904.371</td>
<td>765.541</td>
<td>22,669.912</td>
</tr>
</tbody>
</table>

Note: The value in the Total (MW) column is the number used to calculate a customer's Peak Demand Factor. The above values are used for the adjustment period July 1, 2017 to June 30, 2018. Source: IESO

Information on peak tracking can be found at ieso.ca/sector-participants/settlements/global-adjustment-for-class-a

Greenhouse Gas Emissions

The marked decline in greenhouse gas emissions (measured in tonnes of CO₂ equivalent) is a result of the phase-out of coal-fired electricity generation in the province and uptake of renewable generation and conservation measures. Emissions of oxides of sulphur (SOₓ) – which are predominantly a by-product of coal combustion – have also shown a marked decrease with the phase-out of coal-fired electricity.

Greenhouse Gas Emissions for the Ontario Electricity Sector

The chart below shows annual greenhouse gas emissions (measured in tonnes of CO₂ equivalent) for the years 2008-2017. Year-to-date greenhouse gas emissions in Q3 2018 totalled approximately 3 megatonnes (Mt).

Air Contaminants

Air contaminants, including oxides of sulphur (SOₓ), oxides of nitrogen (NOₓ) and fine particulate matter (PM₂.₅), are also released during combustion of fossil fuels.

Air Contaminants for the Ontario Electricity Sector (Tonnes)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SOₓ Emissions</td>
<td>30,762</td>
<td>38,508</td>
<td>11,966</td>
<td>10,342</td>
<td>10,192</td>
<td>846</td>
<td>424</td>
<td>579</td>
<td>501</td>
<td>378</td>
</tr>
<tr>
<td>NOₓ Emissions</td>
<td>23,653</td>
<td>27,358</td>
<td>18,198</td>
<td>19,867</td>
<td>17,973</td>
<td>11,448</td>
<td>10,355</td>
<td>9,323</td>
<td>6,920</td>
<td>5,715</td>
</tr>
<tr>
<td>PM₂.₅ Emissions</td>
<td>991</td>
<td>855</td>
<td>518</td>
<td>479</td>
<td>445</td>
<td>309</td>
<td>258</td>
<td>235</td>
<td>187</td>
<td>175</td>
</tr>
</tbody>
</table>

Source: IESO, Environment Canada
Electricity demand is generally shaped by several factors that have differing impacts – those that increase demand (population growth, economic change), those that reduce demand on the grid (conservation, embedded generation) and those that shift demand (time-of-use rates, the Industrial Conservation Initiative). The impact of each of these factors on electricity consumption varies by season and time of day.

Even as the Ontario economy has moved beyond the 2008 recession, demand has remained flat. As capacity and energy margins remain adequate, this trend is expected to continue, partly because of the successful implementation of conservation initiatives. Growth in embedded solar and wind generation capacity and on-going conservation initiatives reduce the need for energy from the bulk power system, while also putting downward pressure on peak electricity demands.

Ontario Grid-Connected Peak Demand – as of end of Q3

23,240 MW

set in Q3 – September 5, 2018, 6:00 pm EST

Ontario Monthly Peaks and Minimums

Source: IESO
Forecast Demand Peaks

The demand for electricity on the provincial grid is forecast on a rolling 18-month basis. An assessment is done to assure the adequacy of the existing and proposed generation and transmission facilities to meet demand needs. The chart below presents normal weather forecasts, representing a typical peak for the time of year, and extreme weather forecasts that reflect severe weather conditions. The impacts of time-of-use rates and the Industrial Conservation Initiative – which incent customers to reduce demand in peak demand hours – are also factored into the demand forecast in this report.

<table>
<thead>
<tr>
<th>Season</th>
<th>Normal Weather Peak (MW)</th>
<th>Extreme Weather Peak (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter 2018-19</td>
<td>21,506</td>
<td>22,434</td>
</tr>
<tr>
<td>Summer 2019</td>
<td>21,958</td>
<td>24,384</td>
</tr>
<tr>
<td>Winter 2019-20</td>
<td>21,203</td>
<td>22,084</td>
</tr>
</tbody>
</table>

Source: IESO 18-Month Outlook

Ontario Grid-Connected Energy Demand

<table>
<thead>
<tr>
<th>Year</th>
<th>Q3 Total (TWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018</td>
<td>36.50</td>
</tr>
<tr>
<td>2017</td>
<td>33.62</td>
</tr>
<tr>
<td>2016</td>
<td>36.69</td>
</tr>
<tr>
<td>2015</td>
<td>35.26</td>
</tr>
<tr>
<td>2014</td>
<td>34.27</td>
</tr>
<tr>
<td>2013</td>
<td>35.66</td>
</tr>
<tr>
<td>2012</td>
<td>37.13</td>
</tr>
</tbody>
</table>

Note: Total does not include the impact of embedded generation to reduce demand.

Source: IESO Power Data, Demand Overview

Historical Totals – Annual Ontario Grid-Connected Energy Demand

<table>
<thead>
<tr>
<th>Year</th>
<th>Total (TWh)</th>
<th>Change Over Previous Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018 YTD</td>
<td>103.5</td>
<td>n/a</td>
</tr>
<tr>
<td>2017</td>
<td>132.1</td>
<td>-4.9</td>
</tr>
<tr>
<td>2016</td>
<td>137.0</td>
<td>0.0</td>
</tr>
<tr>
<td>2015</td>
<td>137.0</td>
<td>-2.8</td>
</tr>
<tr>
<td>2014</td>
<td>139.8</td>
<td>-0.9</td>
</tr>
<tr>
<td>2013</td>
<td>140.7</td>
<td>-0.6</td>
</tr>
<tr>
<td>2012</td>
<td>141.3</td>
<td>-0.2</td>
</tr>
</tbody>
</table>

Note: Total does not include the impact of embedded generation to reduce demand.

Source: IESO Power Data, Demand Overview
Electricity Prices

Commodity Cost

Commodity cost comprises two components, the wholesale price (the Hourly Ontario Energy Price) and the Global Adjustment. The commodity cost is only a portion of the total energy bill.

Class A

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOEP*</td>
<td>1.17</td>
<td>1.57</td>
<td>2.04</td>
<td>0.80</td>
<td>1.30</td>
<td>1.93</td>
<td>3.03</td>
<td>1.80</td>
<td>1.65</td>
<td>2.86</td>
<td>1.15</td>
<td>1.67</td>
<td>2.86</td>
<td>2.89</td>
<td>2.69</td>
<td>2.29</td>
</tr>
<tr>
<td>Average Class A Global Adjustment Rate</td>
<td>5.97</td>
<td>5.32</td>
<td>4.51</td>
<td>5.64</td>
<td>4.77</td>
<td>5.48</td>
<td>4.04</td>
<td>4.33</td>
<td>4.93</td>
<td>4.99</td>
<td>5.24</td>
<td>5.99</td>
<td>5.21</td>
<td>4.77</td>
<td>4.75</td>
<td>4.92</td>
</tr>
</tbody>
</table>

*(Unweighted) average of Hourly Ontario Energy Prices to reflect a typical (flat) industrial consumption profile. Source: IESO

Class B

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HOEP**</td>
<td>1.36</td>
<td>1.73</td>
<td>2.31</td>
<td>0.88</td>
<td>1.40</td>
<td>2.06</td>
<td>3.21</td>
<td>1.90</td>
<td>1.72</td>
<td>2.97</td>
<td>1.31</td>
<td>1.83</td>
<td>3.04</td>
<td>3.06</td>
<td>2.99</td>
<td>2.48</td>
</tr>
</tbody>
</table>

**Averages are weighted by the amount of electricity used throughout the province within each hour to broadly reflect the consumption profile of Class B (i.e., residential and commercial) consumers. Source: IESO

***Totals do not sum due to dollar values that are rounded down to cents.
Monthly Wholesale Electricity Prices

The wholesale electricity price fluctuates by the hour. This chart shows the average wholesale prices for each month. The monthly price varies depending on factors in the electricity market that shift the energy price higher or lower. A higher average monthly price exerts a downward pressure on costs that needs to be recovered through Global Adjustment.

![Average Wholesale Electricity Prices Chart]

Unweighted Average Price

Source: IESO

Time-of-Use Pricing under the Regulated Price Plan (RPP)

In accordance with the mandate provided under the *Ontario Energy Board Act, 1998*, the OEB developed the Regulated Price Plan (RPP), which provides residential and small business consumers with stable and predictable electricity pricing and encourages conservation. The plan has been in place since 2005.

RPP consumers with eligible time-of-use (or “smart”) meters that can determine when electricity is consumed during the day pay RPP prices under a time-of-use price structure. The prices for this plan are based on three time-of-use periods per weekday. These periods are referred to as off-peak, mid-peak and on-peak and are shown in the figure below. The hours for mid-peak and on-peak periods are different in the summer and winter months to reflect energy consumption patterns in those seasons, as explained below.

The *Ontario Fair Hydro Plan Act, 2017* came into effect on June 1, 2017. This legislation established the framework under which eligible consumers (referred to in the legislation as “specified consumers”) saw their electricity bills reduced effective July 1, 2017 and by which bill increases can, through adjustments to the commodity price, be held to the rate of inflation starting in May 2018. Under this legislation, the OEB reset RPP prices effective July 1, 2017 to achieve a 25% total bill reduction for a hypothetical regulated rate consumer relative to what RPP prices would have been on May 1, 2017 without any regard to the government’s Fair Hydro Plan. The RPP time-of-use prices set by the OEB effective May 1, 2018 are set out below.

Some “specified consumers” that are eligible for bill reductions under the *Ontario Fair Hydro Plan Act, 2017* are not paying RPP prices, either because they are not eligible for the RPP or because they have chosen to opt out of the RPP in favour of a retail contract or market-based pricing. These “specified consumers” receive their bill relief in the form of a reduction to the Global Adjustment charges that they would otherwise pay. To that end, the OEB also set a credit amount – referred to by the OEB as the “GA Modifier” that will apply to reduce the GA charges payable by these consumers. The GA Modifier has been set by the OEB at – $44.38 per MWh effective May 1, 2018. The RPP prices and the GA Modifier set by the OEB will be in effect until April 30, 2019.
Summer and Winter Time-of-Use Hours

The RPP time-of-use periods are different in the summer than they are in the winter to reflect seasonal variations in how customers use electricity. During the summer, people use more electricity during the hottest part of the day, when air conditioners are running on high. In the winter, with less daylight, electricity use peaks twice: once when people wake up in the morning and turn on their lights and appliances, and again when people get home from work. The time-of-use (TOU) prices applicable in Q3 2018 for RPP consumers with eligible time-of-use meters are shown in the table below.

<table>
<thead>
<tr>
<th>Time</th>
<th>Off-peak</th>
<th>Mid-peak</th>
<th>On-peak</th>
<th>Average Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summer (May 1 – October 31) Weekdays</td>
<td>6.5</td>
<td>9.4</td>
<td>13.2</td>
<td>8.2</td>
</tr>
<tr>
<td>Winter (November 1 – April 30) Weekdays</td>
<td>6.5</td>
<td>9.4</td>
<td>13.2</td>
<td>8.2</td>
</tr>
</tbody>
</table>

This table shows a monthly bill for a Toronto Hydro residential RPP TOU customer with monthly usage of 750 kWh as of May 1, 2018, with 65% of consumption occurring off-peak, 17% occurring mid-peak and 18% occurring on-peak. For consumers in other service territories, delivery charges will vary depending on which utility serves them. For additional information please see the OEB's bill calculator: oeb.ca/consumer-protection/energy-contracts/bill-calculator.

4. On April 14, 2016, the Report of the Ontario Energy Board: Defining Ontario's Typical Electricity Customer was released in which the OEB determined that 750 kWh per month would be the standard used for illustrative purposes.
Ontario Industrial Electricity Rates

Industrial electricity consumers can either be directly connected to the high-voltage transmission grid or receive electricity from their local distributor (e.g., Toronto Hydro). Directly-connected consumers do not pay distribution charges, thus lowering their electricity cost. The table below shows the distribution of average all-in prices for all directly-connected consumers in Ontario for 2017. In Ontario, electricity rates for large industrial consumers in Ontario vary by customer as they are determined by individual consumption patterns. Generally speaking, the less energy a large industrial consumer uses during peak hours, the more these consumers reduce their impact on the provincial power system as well as their electricity costs. For most, the commodity cost incorporates both the fluctuating market price and the allocation of the Global Adjustment based on their energy use during peaks.

Transmission-Connected Industrial Rates

The table below shows average all-in electricity prices for a distribution-connected industrial consumer in several service territories.

Distribution-Connected Industrial Rates (2018)

<table>
<thead>
<tr>
<th>Rate Component</th>
<th>Windsor (EnWin)</th>
<th>Hamilton (Alectra)</th>
<th>Ottawa</th>
<th>Sudbury</th>
<th>Toronto*</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOEP**</td>
<td>28.29</td>
<td>28.33</td>
<td>28.33</td>
<td>29.38</td>
<td>28.40</td>
</tr>
<tr>
<td>Class A Global Adjustment</td>
<td>49.28</td>
<td>49.35</td>
<td>49.36</td>
<td>51.19</td>
<td>49.48</td>
</tr>
<tr>
<td>Delivery</td>
<td>16.61</td>
<td>16.36</td>
<td>18.64</td>
<td>17.27</td>
<td>17.39</td>
</tr>
<tr>
<td>Regulatory</td>
<td>3.92</td>
<td>3.92</td>
<td>3.92</td>
<td>4.07</td>
<td>3.93</td>
</tr>
<tr>
<td>All-In Price</td>
<td>98.10</td>
<td>97.96</td>
<td>100.25</td>
<td>101.91</td>
<td>99.20</td>
</tr>
</tbody>
</table>

* The distribution cost estimate for an industrial customer in Toronto reflects the assumption that 1kVA is 1 kW for billing purposes.
** HOEP is based on a three-month arithmetic average (July to September 2018). The Global Adjustment shown in the table is an average of all distribution-connected Class A consumers for July to September 2018. Both quantities have been adjusted for losses using the applicable primary metered loss factor for each distributor.

Note: The DRC ended for all electricity users on March 31, 2018.

5. Does not include Northern Industrial Electricity Rate Program.
6. Data in the table is for a hypothetical consumer with a monthly peak demand of 5 megawatts and an 85% load factor, reflecting delivery and regulatory charges in effect in Q4 2017. Load factor is an expression of how much energy was used in a time period, expressed as a percentage of what would have been used if consuming at full potential for the entire period. A 30 day month is assumed.

Source: IESO and OEB
2017 Indicative Industrial Electricity Prices (Canadian ¢/kWh)

The table below compares indicative retail industrial electricity prices across North American jurisdictions. For reference, Ontario – South reflects the average price for year-to-date 2017. Ontario – North is based on the same figure, along with the 2 cent per kilowatt hour Northern Industrial Electricity Rate Program rebate. See footnote for more details.

<table>
<thead>
<tr>
<th>Jurisdiction</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Manitoba</td>
<td>4.32</td>
</tr>
<tr>
<td>2. Newfoundland</td>
<td>4.90</td>
</tr>
<tr>
<td>3. Quebec</td>
<td>4.91</td>
</tr>
<tr>
<td>4. Alberta</td>
<td>5.67</td>
</tr>
<tr>
<td>5. Washington</td>
<td>6.08</td>
</tr>
<tr>
<td>6. British Columbia</td>
<td>6.29</td>
</tr>
<tr>
<td>7. Montana</td>
<td>6.41</td>
</tr>
<tr>
<td>8. Ontario – North</td>
<td>6.56</td>
</tr>
<tr>
<td>9. Nevada</td>
<td>6.68</td>
</tr>
<tr>
<td>10. Louisiana</td>
<td>6.69</td>
</tr>
<tr>
<td>11. Oklahoma</td>
<td>6.87</td>
</tr>
<tr>
<td>12. Canadian Average</td>
<td>6.89</td>
</tr>
<tr>
<td>13. Texas</td>
<td>7.11</td>
</tr>
<tr>
<td>14. Iowa</td>
<td>7.19</td>
</tr>
<tr>
<td>15. Saskatchewan</td>
<td>7.30</td>
</tr>
<tr>
<td>16. Arkansas</td>
<td>7.40</td>
</tr>
<tr>
<td>17. Georgia</td>
<td>7.41</td>
</tr>
<tr>
<td>18. Kentucky</td>
<td>7.44</td>
</tr>
<tr>
<td>19. New Brunswick</td>
<td>7.50</td>
</tr>
<tr>
<td>20. New York</td>
<td>7.54</td>
</tr>
<tr>
<td>21. Utah</td>
<td>7.57</td>
</tr>
<tr>
<td>22. Idaho</td>
<td>7.77</td>
</tr>
<tr>
<td>23. South Carolina</td>
<td>7.82</td>
</tr>
<tr>
<td>24. Arizona</td>
<td>7.85</td>
</tr>
<tr>
<td>25. North Carolina</td>
<td>7.92</td>
</tr>
<tr>
<td>26. Tennessee</td>
<td>7.93</td>
</tr>
<tr>
<td>27. Alabama</td>
<td>7.97</td>
</tr>
<tr>
<td>28. Oregon</td>
<td>8.01</td>
</tr>
<tr>
<td>29. New Mexico</td>
<td>8.02</td>
</tr>
<tr>
<td>30. Mississippi</td>
<td>8.09</td>
</tr>
<tr>
<td>31. Missouri</td>
<td>8.45</td>
</tr>
<tr>
<td>32. Illinois</td>
<td>8.55</td>
</tr>
<tr>
<td>33. Ontario – South</td>
<td>8.56</td>
</tr>
<tr>
<td>34. Virginia</td>
<td>8.63</td>
</tr>
<tr>
<td>35. Ohio</td>
<td>8.81</td>
</tr>
<tr>
<td>36. U.S. Average</td>
<td>8.81</td>
</tr>
<tr>
<td>37. West Virginia</td>
<td>8.99</td>
</tr>
<tr>
<td>38. Pennsylvania</td>
<td>9.19</td>
</tr>
<tr>
<td>39. Wyoming</td>
<td>9.26</td>
</tr>
<tr>
<td>40. Prince Edward Island</td>
<td>9.31</td>
</tr>
<tr>
<td>41. Colorado</td>
<td>9.43</td>
</tr>
<tr>
<td>42. Michigan</td>
<td>9.75</td>
</tr>
</tbody>
</table>

Note: Estimates may differ from actual costs to a consumer based on location, connection and operation characteristics. Prices exclude taxes and participation in any applicable jurisdictional benefit programs.

The Ontario industrial price is based on the average all-in price for year-to-date May 2017 and includes the Hourly Ontario Energy Price, Class A Global Adjustment, delivery, wholesale market service charges and the Debt Retirement Charge.

All other Canadian prices (except Ontario) are from the Hydro Quebec Rate Comparison for rates effective April 1, 2017 for select local distribution companies servicing specific cities. Where Hydro Quebec reports prices for two cities in a province (e.g., Calgary and Edmonton), an average of the two is used; in provinces where only one city is reported (e.g., Vancouver in BC, Montreal in QC), that one price is used to represent the province for indicative comparison purposes. In the Hydro Quebec Rate Comparison, a large consumer reflects 50 MW with monthly consumption of 30,600 MWh.

American jurisdictions reflect year-to-date May 2017 data from the US Energy Information Administration’s survey of approximately 500 of the largest electricity utilities. The price reflects the average revenue reported by the electric utility from electricity sold to the industrial sector. The value represents an estimated average retail price, but does not necessarily reflect the price charged to an individual consumer. Prices are converted at an exchange rate of 1 USD = 1.33 CAD.
Electricity – What’s New

A collection of electricity reports and publications.

<table>
<thead>
<tr>
<th>Information</th>
<th>Published By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 Month Outlook</td>
<td>IESO</td>
<td>December 21, 2018</td>
</tr>
<tr>
<td>Quarterly Conservation Report (Q3 2018)</td>
<td>IESO</td>
<td>December 21, 2018</td>
</tr>
<tr>
<td>Progress Report on Contracted Electricity Supply (Q3 2018)</td>
<td>IESO</td>
<td>December 21, 2018</td>
</tr>
<tr>
<td>PowerNews (Fall 2018)</td>
<td>OPG</td>
<td>October 15, 2018</td>
</tr>
<tr>
<td>OPG Quarterly Financial Results (Q3 2018)</td>
<td>OPG</td>
<td>November 13, 2018</td>
</tr>
<tr>
<td>Darlington Refurbishment Report (Q3 2018)</td>
<td>OPG</td>
<td>November 22, 2018</td>
</tr>
<tr>
<td>Darlington Performance Report (Q3 2018)</td>
<td>OPG</td>
<td>December 11, 2018</td>
</tr>
<tr>
<td>Pickering Performance Report (Q3 2018)</td>
<td>OPG</td>
<td>December 11, 2018</td>
</tr>
<tr>
<td>Hydro One Quarterly Report (Q3 2018)</td>
<td>Hydro One</td>
<td>August 14, 2018</td>
</tr>
<tr>
<td>Regulated Price Plan Prices and the Global Adjustment Modifier for the Period May 1, 2018 to April 30, 2019</td>
<td>OEB</td>
<td>April 19, 2018</td>
</tr>
<tr>
<td>Electricity and Natural Gas Distributor Yearbooks</td>
<td>OEB</td>
<td>August 23, 2018</td>
</tr>
<tr>
<td>Review of Customer Service Rules for Utilities</td>
<td>OEB</td>
<td>September 6, 2018</td>
</tr>
</tbody>
</table>

Ontario Energy Report Q3 2018 – Electricity

July – September 2018

Published By

IESO

OPG

Hydro One

OEB

Date

December 21, 2018

December 21, 2018

December 21, 2018

October 15, 2018

November 13, 2018

November 22, 2018

December 11, 2018

December 11, 2018

August 14, 2018

April 19, 2018

August 23, 2018

September 6, 2018